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Abstract. An analysis of a model molecular oscillator is
presented: a vibrating diatomic molecule carrying
Ny electrons. The energy derivatives over the number
of electron (N) and the deformation (Q), 0"/oN" and
0"/0Q" have been analyzed up to second order (n = 2),
including the appropriate mixed derivatives. The effect
of coupling between distortion of the electron density
induced by AN and the vibrational deformation of the
molecule has been studied. Anharmonicity of the oscil-
lator has been shown to be a possible result of that
coupling; new relations between the parameters charac-
terizing the anharmonicity of the oscillator and the
energy derivatives at density functional theory level
have been obtained. Ab initio calculations for a set of
diatomic molecules have been performed, yielding values
for all the derivatives discussed and demonstrating the
effect of coupling with vibrations.
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1 Introduction

Density functional theory (DFT) has offered a unique
theoretical approach for analysis of properties of
molecular systems [1]. Important chemical properties
of atoms and molecules introduced intuitively have
found firm theoretical ground in this theory (electroneg-
ativity, chemical hardness). Characterization of the
actual reactivity of molecules has been a target of
numerous studies aimed at a description of parameters
of atoms in molecules [2]. Quantum-chemical methods
of calculation of such atomic indices, such as the Fukui
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function index, and local softness have been proposed
[3]. Recently, a number of novel quantities of the nuclear
character have been proposed, as a prospective tool for
the description of the effect of mechanical deformation
on a molecule. Cohen et al. [4] introduced the concept of
nuclear reactivity as

OF;
i = (8N>v(r) (1)

The same authors also defined another derivative as
the nuclear softness [4],

OF;
= . 2
’ ( a:u > v(r) ( )

The inverse of this quantity has been discussed by De
Proft et al. [5]; it was given the name nuclear hardness.
Ordon and Komorowski [6] demonstrated that the nu-
clear reactivity is simply the derivative of the chemical
electronegativity; they also proposed a simple approxi-
mation leading to numerical values thereof:

® = (;&)N%(w _F). 3)

The same authors introduced another derivative
under the name of nuclear stiffness [6]
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F; is the Hellman—-Feynman force acting on the ith
nucleus [7]. F*; and F' in Egs. (3) and 4 are total
electrostatic forces acting on the ith nucleus within the
structure of a molecular ion with the number of electrons
increased (Nop+ 1) and decreased (N, — 1), respectively,
while the structure of the molecular skeleton is kept
unchanged. y is the electronegativity, = — y is the
chemical potential, 5 is the global hardness of the
electronic system [1], and Q; = R; — R; is the displace-
ment vector of atom “i” from an equilibrium position
R; ..

This present work provides the detailed analysis of
the following problems:
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1. The entire body of derivatives 9"/dN" and 9"/dQ" has
been analyzed up to second order for a harmonic
oscillator: a vibrating diatomic molecule carrying
Ny electrons. Novel Maxwell relations between the
derivatives are demonstrated.

2. The response of a molecular oscillator to the change
in the number of electrons, N, has been studied
including the effect of coupling between the vibra-
tions and ionization.

3. The anharmonicity of an oscillator is shown to be a
direct effect of coupling with vibrations.

4. Qualitative properties of the derivatives are discussed
as well as relations between them resulting from the
analysis of anharmonicity.

5. The effect of anharmonic deformations on the DFT
derivatives (electronegativity and hardness) is ana-
lyzed for selected diatomic molecules.

2 The energy derivatives for a harmonic oscillator

The nuclear reactivity (®;) and nuclear stiffness (G;)
belong to the group of derivatives of the energy function
for a molecule expressed as E(Q,N). For a simple
molecular oscillator, the vector indices may be trans-
formed into scalar quantities by taking their projection
onto the stretching deformation; the index i will then be
dropped. The energy derivatives at constant N have the
standard meaning of force (F) and the force constant (k).

(28

Similarly, the derivatives at constant equilibrium Q,
which is equivalent to constant nuclear potential v(r),
have well-established meanings of the chemical poten-
tial, p (negative of the chemical electronegativity, y), and
global hardness, 7:

The nuclear reactivity and nuclear stiffness are mixed
second and third derivatives, respectively:

OE(Q,N) OF ou 0y
900N N a0 a0 O ®)
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The remaining pair of derivatives for a harmonic
molecular oscillator has not been discussed so far:

O*E(Q,N) Py 00

=35~ "30"

T A, (11)
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Table 1. Energy derivatives as defined by Egs. (5), (6), (7), (8), (9),
(10), (11), (12), (13), and (14) and their Maxwell relations. For the
explanation of the symbols, see text, Sect. 2

Energy derivatives = d/oN 9°/ON?
U E (energy) K 2n
0/0Q -F -® 2G
9°/00? k ! 2t
10*E(Q,N 2 G

2 00°0N? 90 90 ¢

The entire list of the derivatives discussed in this
section is collected in Table 1, which also indicates the
appropriate Maxwell relations. For a harmonic molec-
ular oscillator all derivatives 9"/0Q" for n >3 are
identically zero. The derivatives 0"/dN" for n > 3 have
typically been neglected within the DFT consideration.
It has been suggested by Fuentalba and Parr [§8] that
at least y = 1/6 9°E/ON> may indeed be negligibly small
compared to p and 5. Hence, the derivatives defined
by Egs. (7), (8), (9), (10), (11), and (12) represent a
reasonable, minimal set of nonzero energy derivatives
for an oscillating system.

Calculation of actual values for all defined derivatives
requires solving an everlasting dilemma in applications
of the DFT formalism. The 9"/dN" derivatives, though
well defined, can only be deduced from the data avail-
able for physically existing systems: neutral molecule
(M) and its ions (M, M"), etc. As has been indicated in
previous works, the only available derivatives are aver-
ages in the range [Ny — 1, Ny+ 1], not the true deriva-
tives at Ny [9, 10, 11]. (An approximate novel calculation
scheme for 0"/oN" derivatives has been recently pro-
posed at the level of the quantum-chemical Hartree—
Fock formalism [3].) This is in contrast to the pure
0"/0Q" derivatives that can all be calculated strictly
at No.

Using the method described in a previous article [6] it
is straightforward to derive approximate expressions for
A and 7t as average derivatives, strictly analogous to @
and G.
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"2

4= 90 " ONOQ  oN
Py 19 OE 10% 1

"T 907 T 20N2002 T 20N? 2
k' and k= are the force constants for an ionized
molecular oscillator with (Ng+ 1) and (Vo — 1) electrons,
respectively.

Results calculated for the entire set of derivatives are
shown in Tables 2 and 3.

(k" —k"), (13)

(k" +k)—k (14)

3 The energy function for a molecular oscillator

The set of derivatives discussed may be used in the
Taylor expansion for the energy function E(N,Q). For
a molecular harmonic oscillator the energy may be
expressed in terms of Q and N as
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Table 2. Calculated molecular parameters: electronegativity, i,
chemical hardness (global), . ® and G (Egs. 3, 4, 8) are quoted
from Ref. [6]. The energy units are electron volts and the distance is
in angstroms

Molecule — y=-p=54 p=54 o) G

LiH 4.003 3.729 0.530 -0.928
HF 6.913 9.465 0.139 -3.684
F, 7.676 7.578 -9.169 -8.120
Cl, 6.048 5.332 —4.883 -2.939
Li, 2.595 0.046 0.042 —0.444
FCl 6.599 6.154 —6.562 —2.340
CcO 5.981 7.899 —4.054 4.393
LiF 5.978 5.592 -1.272 -1.920
BCl 4.739 5.063 -3.010 0.663
BH 4.702 4.682 -0.570 0.178
CS 5.522 5.767 -3.968 0.740
NF 6.066 4.421 —6.524 0.149
SO 5.476 3.552 -2.619 0.594
HCl 5.365 7.277 —0.280 —1.445
LiCl 5.214 4.675 0.590 —1.248
BF 4.864 5.928 -2.830 0.372
SiO 5.936 6.089 —1.058 —0.958

Table 3. Calculated vibrational force constants for the neutral
molecule (k) and its molecular ions, resulting from adding (k™) or
removing (k~) one electron from the system. The derivatives A and ©
were calculated according to Eqgs. (13) and (14), respectively. For
the sake of clarity in comparing with other molecular parameters,
the units the force constants are electron volts per square angstrom
(=0.0624151 N/m])

Molecule k k" k™ A T

LiH 8.4235 7.3462 79148  —0.2843 —-0.7930
HF 67.8714  69.1147  51.5993 8.7577 -7.2647
F, 68.2721  29.8298 160.8334 —65.5002 27.0595
Cl, 429224 321235  48.3226 8.0995 -2.6994
Li, 2.9684 3.4646 2.7231 0.37074 0.1254
FCl 52.6092 135.2291  49.7169  42.7561 39.8638
CcO 224.2665 318.5805 225.1029  46.5888 47.1503
LiF 52.7652  28.4435  23.8230 2.3102  —26.6320
BClI 36.2379  36.2978  35.2036 0.5472 0.4871
BH 23.8993  23.8904  22.4986 0.6959 -0.6984
CS 91.4241 559846  88.1368  72.0606 19.3634
NF 92.3158  77.0270 109.4944 —-16.2337 0.9094
SO 75.6626  90.2458 105.3819 —7.5680 22.1512
HClI 35.6855  35.5500 9.0719  13.2390 -13.3745
LiCl 11.7901  13.0278  11.2808 0.8735 18.3040
BF 94.9318  98.9950  85.4904 6.7523 -2.6892
SiO 98.1612  75.6620 97.1819 -10.7599 -11.7392

1
AE = uAN + EkQ2 — ®OAN + nAN?
1 1

+ EinAN + GOAN? + EerANZ. (15)

All derivatives are numbers calculated at E(Q =0,
Nyp); hence, the first energy derivative F (force) is zero.
The total energy of a quantum oscillator in any given
vibrational state (v) does not depend on the actual dis-
placement, Q; hence, the energy expression must con-
form to the condition JAE/dQ = 0. This leads to the
following coupling condition between the deformation,
0, and the change in the number of electrons, AN:

®AN — GAN?
Q_k+/1AN+rAN2' (16)
In the limit of small AN this result reduces to
(1))
0 =—AN. (17)

k

By inserting this into the energy expansion, the fol-
lowing expression is obtained:

() A0
AE = —— JAN? + AN
pea (- 2)av+ 2 (226w
(D2
Z TAN* 1
+o5 AN (18)

The important feature of this result is the apparent
change in the second derivative of the energy, (the global
hardness, 77) with respect to a hypothetical rigid system

(n):

(1)2
n=n—7 (19)

The global hardness of an oscillator is lower than that
of a rigid system owing to the very fact it is oscillating,
not owing to the actual deformation. This phenomenon
was first discussed by Luty [12]. Surprisingly, oscillations
seem to have no effect on the chemical potential of the
system. They do, however, change the general character
of the energy function: higher energy derivatives (3 and
4), typically neglected at the DFT level for an isolated
system, must be taken into consideration.

An insight into the role of coupling with vibrations
may be obtained via analysis of the ionization energy (/)
and the electron affinity (4) of an oscillating system
compared to a hypothetical rigid one (I, A). When AE
for AN = £ 1 is calculated from Eq. (18), the following
corrections are obtained:

far-2 2G+®+%—r
2k k
§ ® ), : (20)

I and 4 are directly modified not only by the change
in hardness, but also by the appearance of the third and
fourth powers of AN assumed to be zero and not taken
into account for a rigid entity. Calculation of the cor-
rections (I — ) and (A A) are given in Table 4; the
calculated hardnesses, 77, of oscillating molecules are also
given. It is important to note that for an oscillating
system the global hardness is not necessarily equal to 1/2
(I — A), owing to the character of the function AE(AN).
Calculated 1/2 (I — A4) are also shown in Table 4.

4 The anharmonicity of an oscillator

Coupling between Q and AN as given by the approxi-
mate relation (Eq. 17) allows analysis of further conse-
quences of the molecular deformation. It is, in principle,
possible to expect ionization of the molecule induced
by sufficiently large deformation (Egs. 16, 17, 18). At
moderate deformations, however, another form of



Table 4. Corrections to the ionization energy and electron affinity
induced by the coupling with vibrations as given by Eq. (20).
Global hardness of the oscillating molecules (i7) was calculated
according to Eq. (19) and compared to the 1/2( — A) value. All
results in electron volts

Molecule -1 A—4 A i
LiH 0.0173 0.100 3.687 3.712
HF —0.000055 0.0151 9.457 9.465
F, -2.932 1.933 5.145 6.962
Cl, —0.511 —-0.262 5.208 5.054
Li, 0.00684 0.00565 0.0465 0.0457
FCl -3.520 2.271 3.259 5.745
CcO —-0.391 0.535 7.436 7.862
LiF 0.259 -0.353 5.898 5.577
BCl -0.0921 0.198 4918 4938
BH 0.00558 0.00252 4.684 4.675
CS -0.542 0.471 5.261 5.681
NF -0.212 0.314 4.158 4.190
SO —-0.404 0.454 3.123 3.507
HCI 0.0396 —0.0631 7.328 7.276
LiCl 0.504 -0.382 5.118 4.660
BF 0.00599 0.0102 5.926 5.886
SiO 0.0479 -0.0673 6.146 6.083

coupling must be considered. As a consequence of
deformation, the electron local density will be modified
by Ap(r), while the total number of electron will remain
constant, AN = JAp(r)dr = 0. Hence, the coupling be-
tween Q and Ap(r) must be discussed rather than
coupling between Q and AN. This change modifies the
meaning of the derivatives p, 1, ®, and G needed to
describe this effect. Instead of d©ON, the functional
derivatives (0/0p) at constant N must be found: ', n’, @,
and G’. In order to complete this present analysis, it
is assumed that the general form of Eqgs. (15) and (17)
can still be used locally, when Ap(r) replaces AN. The
integrated energy expression may thus be transformed
into much instructive form:

(R K
o) "2

k (., G\ 5 T(k\ 4

+2®,()»+2kq)/>Q +2<®,> o". (21)
The prime is added to all derivatives that would change
their meaning in the absence of actual ionization. The
form of the expression indicates that the coupling
between Q and the change in electron density, Ap(r), is
a source of anharmonicity of the oscillator. In the
absence of coupling, the energy expression would be
that for a harmonic oscillator: AE = — 1/2(kQ?). Equa-
tion (21) may be compared to the classical Morse
potential [13]:

AE = D(1 — ¢ 9)*, (22)

where D, is the dissociation energy and the experimental
parameter « is directly related to the force constant k at
the energy minimum [14]:

k
AE:#’@Q* o’

1

k 2
a= (2De> '

(23)
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Expanding the exponent in Eq. (22) in a power series
to the second term results in

k
AE =~
2

The role of anharmonic terms defined experimentally
is fully exposed in Eq. (24). Since Egs. (21) and (24)
must be identical at all Q, the coefficients at corre-
sponding powers must be equal one by one. This leads to
a number of simple and potentially useful conclusions,
which are discussed in detail in the last section.

ka k2
2 ka3 KTy
Q-0 + 165 0 (24)

7 =0, (25)
k=2, (26)
) 2kG 2kG
a__(a+ (I)’2>g_(l)’2’ (27)
(D/2
= —. 28
27 (28)

5 The role of deformation in changing electronegativity
and the global hardness

The analysis given in previous sections unveiled the
consequences of the mere fact that the molecule is
vibrating. The actual consequence of deformation by the
vibrational motion has not yet been shown. It must be
noted that for a molecular oscillator in motion only the
average quantities can be given a physical meaning.
At each vibrational level, the average displacement from
the equilibrium position {Q) will determine the average
change in electronegativity (Ay) and the average change
in global hardness (Az). To a reasonable approximation,
for a diatomic molecule (Egs. 9, 10):

(Ax) = (¢Q) = d(Q)- (29)
(An) = (GQ) = G(Q), (30)

For a harmonic oscillator {(Q) = 0 at all vibrational
levels; for an anharmonic oscillator, however, (Q) # 0.
The properties of the Morse potential (Eq. 21) dictate
that (Q) > 0 and (Q) increases with the quantum
number, v, of the oscillation energy levels.

Using the Morse potential, the average amplitude of
an oscillator at an energy level v is

() = —%ln(l _zET:> > 0.

D, is the depth of the potential minimum (dissociation
energy), « is the Morse parameter; E, is the energy at vth
vibrational level below the dissociation limit, typically
given by the expression

E, = +1_ +12_
,)fvzv uzvxe.

X, 18 the experimental anharmonicity constant. It is now
possible to study the overall change in electronegativity

(31)

(32)
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(Ay) and hardness (An) due to the anharmonic defor-
mations at all energy levels below the dissociation limit
of an oscillator. This is shown in Figs. 1 and 2.
Experimental data for the frequency, the anharmonicity
constant, and the dissociation energy were used, as given
in Table 5. The excitation energy was calculated from
Eq. (32); the electronegativity (Fig. 1) and the global
hardness (Fig. 2) were calculated from Egs. (29) and
(30), respectively. The average displacement (Q) was
calculated from Eq. (31). In the case of hardness, the
additional effect of oscillations (Eq. 19) has been
included (17 + (An)).

6 Results and conclusion

Calculations were performed using the second-order
Moller—Plesset method and the 6-311 + G(3df, 3dp) basis
set for the GAUSSIAN 94 code [15]. The geometry was
optimized for a neutral molecule using a quasi Newton—
Raphson procedure [16, 17]. The anion and cation
energies, the forces, and the force constants were
calculated in the neutral molecule geometry. Then,
frequencies were obtained. The results of this work are
collected in Tables 3 and 4. The calculated vibrational
frequencies are shown in Table 5; they fit the experi-
mental data well.

Calculated derivatives of the force constant k£ (4 and
7) shown in Table 3 are, in most cases, 1 order of
magnitude smaller than the force constant itself, though
notable exceptions are observed: F,, FCl, CO, CS. They
are certainly not less important numerically than ® and
G derivatives. This is best observed in calculated cor-
rections to the ionization energy and the electron
affinity of an oscillator in Table 4 (Eq. 20). Although
the corrections are generally small, 4 and 7 contribute
significantly to / and 4. It is interesting to note that
even in an extreme case when the force constant does
not depend on N (4 = 0 and t = 0), corrections to / and
A4 must still be considered; they would be due to @ and
G only. The 1/2(I — A) value for an oscillator should be
compared to 1/2(1 — 4) in Table 2 in order to estimate
the effect of vibration on the global hardness. However,
1/2(I — A) for an oscillator is not equal to its hardness
(second derivative of energy), as indicated by Eq. (18).
This is confirmed by calculated 7 in Table 4. The cor-
rection to the hardness (Eq. 19), ®%/2k, is generally
smaller than the correction to 1/2(1 — A).

The most interesting finding of this work is the role of
coupling of the vibrational movement of the nuclei with
the deformation of the electron density. Equation 21,
albeit approximate, provides an insight into the source
of anharmonicity. Consider a molecule (oscillator)
where A =0 and t = 0. From the point of view of the
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Fig. 1. The change in electronegativity induced by the anharmonic
deformation (Eq. 29), y + (Ay). The data points were calculated
for the series of quantum states given by v =1, 2, 3... until the

excitation energy calculated from Eq. (32) reached the dissociation
limit, D., marked by a vertical line
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deformation (Eq. 30), as well as by the oscillatory motion (Eq. 19),
i1+ (An). The data points were calculated for the series of quantum

Eq. (32) reached the dissociation limit, D., marked by a vertical line

Table S. Experimental data of

vibrational frequency (7) and Molecule v(cm™") (experiment) e(em™) D (eV) a (1/A) v(em™") (calculated)
;‘3;“{?;3’“?@"3;?;35{5;3 from iy 1405.65 2320 2515 1128 142421
energy (D.) and the parameter  HF 4138.32 89.88 6.123 2218 4176.08
(a) of the Morse potential were  F2 916.64 11.236 1.658 2.975 978.54
calculated using these and other  Ch 559.72 2.675 2.514 2.002 577.74
data from the same source Li, 351.43 2.610 1.068 0.273 339.19
(reduced mass, dissociation FCl 786.15 6.16 2.666 2.291 794.95
energy Dy). The calculated CO 2169.81 13.288 11.226 2.299 2130.27
vibrational frequency is shown  LiF 910.34 7.929 5.966 1.144 884.79
in the last column BCl 839.12 S.11 5.552 1.397 865.01
BH 2366.90 49.39 3.565 1.633 2440.42
CS 1285.08 6.46 7.434 1.888 1310.95
NF 1141.37 8.99 3.620 2.928 1262.06
SO 1149.22 5.63 5.430 2.183 1035.38
HCl 2990.95 52.82 4.612 1.869 3060.51
LiCl 643.31 4.50 5.950 0.864 629.23
BF 1402.13 11.84 7.886 1.787 1408.22
SiO 1241.55 5.966 8.338 1.860 1186.96

vibrational motion such a molecular oscillator might be
called “‘strongly harmonic”, as no direct relationship on
N of the force constant, k, is assumed. Nevertheless,
owing to the coupling with the change in electron
density, the anharmonicity term will still be present in
the energy expression (Eq. 21), as long as G is finite!
Anharmonicity appears to be an intrinsic property of a
molecular oscillator. Moreover, experimental parame-
ters describing the anharmonicity through the spectro-
scopic data can now be related to the DFT descriptors of

the molecular system. This requires a comment on the
relation between the partial derivatives (d0N) and
functional derivatives (0/0p). It is now well established
that for the chemical potential

_ (OE\  (OE SE\
= (aw), ()7 (57),

It has been proved that p and p’ differ by a constant
[1]. Consequently, it might be expected that n =1y,
® = ®”, and G = G’. This conclusion is further sub-

(33)
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stantiated by the proof that local and global hardness
must be identical [18].

From the result of this present work (Eq. 25) it fol-
lows, rather interestingly, that p’ = 0. Other relations
given by Eqgs. (26), (27), and (28) might be quite useful;
they must be dealt with caution, though. Since the de-
rivatives calculated throughout this work are all average
values rather that true derivatives, it is not expected that
they strictly conform to Eqgs.(26) and (27). It is, however,
instructive to inspect qualitative requirements intro-
duced through these equations.

From Eq. (26) it follows that the global hardness
must be positive number, which is generally accepted,
though never formulated as a principle. Confronting
Egs. (19) and (26) it might be expected that 7= 1/2#,
which is apparently too far reaching, and is not con-
firmed by the data. Another qualitative hint comes from
Eq. (27), which suggests that G is always less than zero
since the anharmonic a parameter is, by definition,
positive. This conclusion is crucial: it means that in most
cases hardness is lowered by deformation; the calculated
values of G in Table 2 corroborate this conclusion, with
one exception: CO. Unfortunately, the sign of @ cannot
be determined in general. Finally, from Eq. (28) it comes
that t > 0; small 7 is associated with a high dissociation
energy. The role of @ and G is again exposed in
Egs. (26), (27), and (28). Even in the strong harmonic
limit, 4 —» 0 and t — 0, anharmonic properties of a
molecular oscillator (¢) do not vanish, unless G also
becomes insignificantly small or the molecule is ex-
tremely hard electronically (Eq. 27). The dissociation
energy is determined predominantly by t, but 1 — 0
does not necessarily mean that the oscillator is har-
monic, unless the role of @ is known (Eq. 28).

A new insight into the properties of the set of mole-
cules under study is opened by the analysis of how
electronegativity and hardness are modified by actual
deformations (Figs. 1, 2). Here the role of the derivatives
A and 1 were neglected in order to study the first-order
effects only. A qualitative conclusion born form the
analysis of anharmonic properties is confirmed: the
global hardness decreases through deformation. For
some molecules (F,, Cl,) the global hardness may even
drop to zero when the molecule approaches the disso-
ciation limit. This property is not general — other mol-
ecules change their hardness by a much smaller extent
(HCI, HF, LiF). The electronegativity is also modified
by deformation, but to a smaller degree. These results
may be of value for the chemical reactivity: when
deformations introduced through excitations to higher
vibronic levels bring the hardness to zero, electron

instability may occur and electron transfer follows. The
parameters @ and G offer useful insight into this phe-
nomenon. The role of A and 7 is observed indirectly in
Figs. 1 and 2: they determine the anharmonic parame-
ters (a, D.) whose role in vibrational softening is crucial.
All four parameters together, ®, G, 4, and 7, available
now through the quantum-chemical routine calculation,
seem to contain rich information about the molecule,
especially in the context of its reactivity.
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